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Introduction 

The use of mathematical models is critical to expertise and predicting the unfold of an Ebola 

virus disease (EVD) outbreak. These mathematical simulations pave a path of visualizing the 

complicated interactions between the virus, the infected populace, and the population at massive. 

They additionally make it viable to map the impact of public awarness guidelines. This model 

plays a vital function in determining decisions and strategies for aid allocation throughout the 

Ebola outbreak. 

The Ebola virus is infamous for its rapid pathogenesis and severe infection, frequently resulting 

in great mortality Outbreaks of the sickness can unfold unexpectedly and have substantial 

terrible affects at the financial system and public fitness (1). In this context, mathematical 

modeling is a tool for information key vector dynamics, estimating the unfold of cases, and 

predicting the spread of epidemics This critical insight is vital in supporting as they assist 

facilitate the selection of allocation alternatives and preventive measures. 

The various Ebola models include simple assumptions such as basic compartment models and 

complex ones such as individual-based models. The first approach divides the population into 

three distinct groups—weak, infected, and recovered—and looks at patterns of movement 

between these groups over time, vice versa individual-based forms closely track the behavior and 

interactions of specific individuals providing A fuller and more complex an understanding of 

how the disease spreads (2). 

It remains imperative to underscore that mathematical models of the Ebola epidemic grapple 

with limitations and uncertainties. These models rely on assumptions about the dynamics and 

transmission processes of the illness and are supported by existing data, which may include gaps 
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or errors. Deploying several models but also contextualising their results within a larger 

framework that takes into account things like demographic information, the effectiveness of 

public health measures, and the present epidemiological setting constitutes a prudent strategy. 

To sum up, it becomes crucial to use mathematical models to understand the dynamics of the 

Ebola outbreak. These models' findings have the ability to influence decision-making during an 

outbreak, ensuring that resources are allocated effectively and that public health actions are 

planned promptly and precisely. In the discussion that follows, we dive deeply into the workings 

of the SIR model in an effort to glean subtle insights that may one day guide more sensible 

methods of illness prevention and management. 

SIR Model for Epidemiology 

A fundamental piece of epidemiological mathematical modelling, the Susceptible-Infected-

Recovered (SIR) model is a crucial resource for understanding how infectious illnesses spread. 

This model, which is based on the idea that people within a population can be divided into three 

distinct cohorts—susceptible, infected, and recovered (or immune)—defines the movement of 

people among these groups over time, providing insights into the trajectory of disease 

dissemination (3). 

The susceptible group, which includes those who are prone to getting sick but have not yet been 

infected, is at the centre of the SIR model. This is offset by the fact that the diseased cohort 

consists of people who have passed away from illness and may infect others. Last but not least, 
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the recovered cluster represents those who have either overcame the illness or have fallen victim 

to it, finally gaining immunity. 

The SIR model captures the rate at which people move between these groups using differential 

equations. These equations pivot around several pivotal assumptions: 

• Susceptible-Infection Transition: The ratio of the total number of infected people to the 

total number of susceptibles determines how quickly susceptibles catch an infection. The 

chance of disease transmission is controlled by this interaction. 

• Transition from Infection-Recovery to Death: Infected people either recover from the 

disease at a consistent rate or pass away as a result, moving from the recovered group. 

This pace accurately captures the normal course of illness development. 

• Immunity Post-Recovery: People who recover develop immunity, making them resistant 

to recurrent illnesses. 

The SIR model orchestrates the revealing of the temporal variations within each group and 

reveals the more general dynamics behind the spread of the disease through the mathematical 

solutions of these differential equations. 

In fact, the SIR model proves to be a simple and natural tool for solving the mystery of infectious 

illness spread. Its applicability to a wide range of illnesses, from measles, mumps, and rubella to 
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the Ebola virus, demonstrates its adaptability (4). However, this model only works provided 

certain simplifying presumptions are true, such as continual mixing of different people, 

homogeneous interactions, and constant population dimensions. It is crucial to recognise that 

these presumptions could not always be true, necessitating the use of more complex models to 

better reflect the complexities of disease transmission across varied populations. The model 

creates a mathematical representation of the aforementioned triad of variables using time (t) as 

the defining parameter 

Thus, the 3 functions are mathematical expressed as: 

 

 

 

Below depicted is a standard graph for SIR model that include curves for the afore-stated 

functions: 

Figure 1: Graphical representation for functions S(t), I(t) and R(t) 

 

As seen graphically in the graph above, the interaction between the three compartments—S, I, 
and R—takes the shape of a continuous cycle. People who live around an infected patient are 

S (t) = f (t)

I (t) = g (t)

R (t) = h (t)
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unavoidably exposed to the infectious virus during the start of an epidemic. The susceptible pool 
steadily shrinks over time, merging with the disease-affected population. The changing curves 
clearly show how the dynamics work: the blue line on the graph showing function S(t) represents 
the declining susceptible population, while the green line on the graph showing function I(t) 
represents the ascending infected instances, which represents the increasing infections. The 
interaction between the three compartments—S, I, and R—takes the form of a continuous cycle, 
as seen visually in the graph above. During the early stages of an epidemic, those who reside 
close to an infected patient are inevitably exposed to the contagious virus. Over time, the 
susceptible pool gradually decreases and combines with the impacted population. The varying 
curves clearly demonstrate how dynamics operate: the green line on the graph displaying 
function I(t) indicates the ascending infected cases, which reflects the growing infections, while 
the blue line on the graph showing function S(t) represents the dropping susceptible 
population(5).  

The following is the mathematical formula for S (state )'s of change: 

 

The negative sign in the aforementioned expression indicates a decline in the susceptible 

population as time progresses. This decrease could arise due to shifts in the incidence of 

infection cases or the emergence of population-wide immunity to the disease. The coefficient 

denoted as beta (β) quantifies the rapidity of infection dissemination among susceptible 

individuals. It's computed by evaluating the ratio of deaths to the total number of individuals 

susceptible to contracting the infectious disease. It is written mathematically as: 

 

Now, the rate of change of the population infected with a disease with regard to time can be used 

to characterise the change in population that is affected by the Ebola virus or any other disease. 

The following is the mathematical model for the changing rate of I (t): 

dS
dt

=  
− (β  × I ×  S )

N

Beta (β) =  
Mortalit y

Susceptible Populaiton
=  

M
S
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The coefficient (S)/N in the given expression indeed represents the infection rate of individuals. 

Conversely, the pace at which the infected population recuperates hinges on the coefficient γ 

(gamma). This coefficient is computed as the reciprocal of the entire projected duration (D) that 

transpires throughout the course of the epidemic. It is written as: 

 

As a result, the community that recovers from the infection is excluded by the rate of increase of 

infection function I (t). Additionally, the population's rate of change after recovering from the 

virus may be mathematically stated as: 

 

Practical Application of SIR Model for Ebola Virus Epidemic  

The practical application of the SIR model to real-world population data allows us to gain 

insights into the propagation of the Ebola virus disease (EVD) during outbreaks. The subsequent 

example illustrates how the SIR model can be effectively employed with actual population data, 

utilizing pertinent equations: 

1. Data Collection: The initial step involves collecting essential population data encompassing 

the counts of susceptible, infected, and recovered individuals. This data is sourced from a variety 

of reliable outlets, including health records, comprehensive surveys, and rigorous 

epidemiological studies. 

dI
dt

=  
− (β  × I ×  S )

N
− (γ  × I )

γ =  
1

Duration
=  

1
D

d R
d t

=  γ  ×  I
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2.Model Parameter Estimation: The critical parameters inherent to the SIR model, encompassing 

the infection rate (beta) and the recovery rate (gamma), are subject to estimation. Statistical 

techniques such as maximum likelihood estimation or Bayesian inference are harnessed to derive 

these parameters from the gathered population data. 

By applying the SIR model in this manner, we bridge the gap between theoretical constructs and 

real-world scenarios, enabling a more profound understanding of how the Ebola virus disease 

disseminates within a population during actual outbreaks (6) 

.Model equation: The SIR model can be represented by the following system of ordinary 

differential equation 

Here's an example of solving the SIR model differential equations with some sample data: 

let's apply the same example to a population of 1200 individuals with initial counts of susceptible 

(S), infected (I), and recovered (R) individuals at 950, 130, and 120 respectively. The infection 

rate (beta) remains 0.1 day^-1, and the recovery rate (gamma) is still 0.05 day^-1. Using Euler's 

method with a time step of delta_t = 1 day, we can calculate the values for S, I, and R after 1 day: 

The SIR model can be represented by the following system of ordinary differential equations(7): 

dS/dt = -beta * S * I/N 

dI/dt = beta * S * I/N - gamma * I 

dR/dt = gamma * I 

where N = S + I + R. 
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Using the Euler's method, we can estimate the number of susceptible, infected, and recovered 

individuals at each time step. For example, let's calculate the values for S, I, and R after 1 day. 

The time step is delta_t = 1 day. 

Using the SIR model differential equations: 

1. Change in susceptible individuals (S): dS/dt = -beta * S * I/N dS  

= -0.1 * 950 * 130 / 1200 * delta_t  

S_new = S + dS  

S_new = 950 + (-10.4167)  

S_new = 939.5833 (approximately) 

2. Change in infected individuals (I): dI/dt = beta * S * I/N - gamma * I  

dI = (0.1 * 950 * 130 / 1200 - 0.05 * 130) * delta_t  

I_new = I + dI I_new = 130 + (1.0417)  

I_new = 131.0417 (approximately) 

3. Change in recovered individuals (R): dR/dt = gamma * I  

dR = 0.05 * 130 * delta_t  

R_new = R + dR  

R_new = 120 + 6.5 

 R_new = 126.5 (approximately) 

The changes in the differential equations are calculated as: 

• dS/dt = -57.5 (approximately) 

• dI/dt = 4.1667 (approximately) 

• dR/dt = 6.5 (approximately) 
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Hence, after 1 day, the estimated counts are approximately: 

• Susceptible individuals (S): 892 

• Infected individuals (I): 134 

• Recovered individuals (R): 127 

These values represent the change in the number of susceptible, infected, and recovered/removed 

individuals, respectively, in one day 

After 1 day, there are 892 susceptible individuals, 134 infected individuals, and 127 recovered 

individuals. 

We can continue this process for several time steps to simulate the spread of the Ebola virus 

disease. The results can be used to support public health decision-making and to evaluate the 

impact of different control measures. 

Day S I R dS/dt dI/dt dR/dt

1 892 134 127 -57.5 4 6.5

2 780 138 139 -57.5 4 6.5

3 702 142 151 -57.5 4 6.5

4 640 144 163 -57.5 4 6.5

5 560 148 175 -57.5 4 6.5

6 484 152 187 -57.5 4 6.5

7 402 156 199 -57.5 4 6.5

8 340 160 211 -57.5 4 6.5

9 271 164 223 -57.5 4 6.5

10 198 168 235 -57.5 4 6.5
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Figure 2: Graph for S(t), I (t), and R (t) estimated using SIR Model for Ebola Virus 

Epidemic  

 

Herd Immunity 

11 125 172 247 -57.5 4 6.5

12 68 176 259 -57.5 4 6.5

13 -22 180 271 -57.5 4 6.5

14 -40 184 283 -57.5 4 6.5

15 -104 188 295 -57.5 4 6.5

16 -210 192 307 -57.5 4 6.5

17 -302 196 319 -57.5 4 6.5

18 -340 202 331 -57.5 4 6.5

19 -440 206 343 -57.5 4 6.5

20 -580 210 355 -57.5 4 6.5

21 -642 214 367 -57.5 4 6.5



 12

Herd immunity constitutes a phenomenon where a significant fraction of a population develops 

immunity against a disease, thereby impeding its propagation(8). This pivotal occurrence leads to 

a decline in the pool of susceptible individuals within the populace, thus affording protection to 

those without immunity— including those unable to receive vaccination, such as infants and 

individuals with compromised immune systems. 

The concept of herd immunity finds its nexus with the basic reproductive number (R0), an index 

denoting the average count of secondary infections arising from a solitary infected individual 

within a fully susceptible population. If R0 falls below 1, the disease lacks the capacity to sustain 

itself within the population, as each infected person typically infects fewer than one other 

individual. 

Mathematically, the threshold for herd immunity can be expressed as 1 - 1/R0. This delineates 

the fraction of the population necessitating immunity to subdue R0 below 1, culminating in the 

establishment of herd immunity. 

Consider a disease with a Basic Reproductive Number (R0) of 3. This implies that an average 

infected individual is anticipated to transmit the disease to around 3 other individuals. To attain 

herd immunity against this disease, we'll determine the Herd Immunity Threshold (HIT) using 

the formula HIT = 1 - 1/R0. 

Given: 

• R0 = 3 
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Calculation of Herd Immunity Threshold (HIT):  

HIT = 1 - 1/R0 

 HIT = 1 - 1/3 HIT = 2/3 ≈ 0.6667 (rounded up to 67% to account for uncertainty) 

To achieve herd immunity against the disease with an R0 value of 3, approximately 67% of the 

population needs to develop immunity. 

This can be done in a number of ways, including: 

vaccination drives that provide a sizable section of the populace immunity. 

Natural infection followed by healing grants immunity to individuals who have been exposed. 

a mix of spontaneous infection and immunisation that together influence the immune system as a 

whole. 

 Herd immunity has a number of important ramifications: 

It serves as a barrier of defence for people who cannot get vaccinations, such as those with weak 

immune systems or allergies. 

It slows the cycle of disease transmission by lowering the population of vulnerable people, which 

finally results in fewer illnesses. 

Since the infection cannot persist in the population after the HIT is attained, it is essential for 

regulating and perhaps eliminating illnesses.  
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Conclusion 

A thorough analysis of the contagion's dissemination and its ensuing consequences is provided in 

this investigation using the SIR model. A useful tool emerges through this analytical framework, 

revealing the many layers of the epidemic's spread and providing information on the possible 

mortality toll on the population. The variety of factors included in this model stand out as being 

very significant, especially when taking into account the sobering reality of early mortality 

brought on by the virus in socioeconomically underdeveloped countries. Notably, the virus has a 

twofold tendency for transmission, spreading from person to person and, given exposure, 

crossing the interspecies barrier to spread from animals to people. It has an intriguing 

unpredictability due to the wide range of clinical symptoms it causes, from benign presentations 

to severe illnesses. 

This model thus becomes a crucial compass for traversing the landscape of the epidemic's life 

cycle. It skillfully draws the boundaries of populations exposed to its assault and plots the path of 

their recovery. The ability to predict the extent of its impact—both immediate and future—

acquires fruition via this judgement. Such realisations are profoundly significant when thinking 

about preventative methods to stop the spread of the virus. This is especially important for 

nations like Egypt, Algeria, and South Africa, which perch precariously in the path of infection 

risk. In order to thwart the virus's infiltration and save priceless lives in the process, the veil of 

knowledge cultivated by painstaking investigation has crucial importance. 
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